464 research outputs found

    Bayesian blind component separation for Cosmic Microwave Background observations

    Full text link
    We present a technique for the blind separation of components in CMB data. The method uses a spectral EM algorithm which recovers simultaneously component templates, their emission law as a function of wavelength, and noise levels. We test the method on Planck HFI simulated observations featuring 3 astrophysical components.Comment: 15 pages, 5 figures, to appear in the Proceedings of the MAXENT 2001 international worksho

    Independent Component analysis of the Cosmic Microwave Background

    Get PDF
    This paper presents an application of ICA to astronomical imaging. A first section describes the astrophysical context and motivates the use of source separation ideas. A second section describes our approach to the problem: the use of a noisy Gaussian stationary model. This technique uses spectral diversity and take explicitly into account contamination by additive noise. Preliminary and extremely encouraging results on realistic synthetic signals and on real data will be presented at the conferenc

    Multi-Detector Multi-Component spectral matching and applications for CMB data analysis

    Full text link
    We present a new method for analyzing multi--detector maps containing contributions from several components. Our method, based on matching the data to a model in the spectral domain, permits to estimate jointly the spatial power spectra of the components and of the noise, as well as the mixing coefficients. It is of particular relevance for the analysis of millimeter--wave maps containing a contribution from CMB anisotropies.Comment: 15 pages, 7 Postscript figures, submitted to MNRA

    BLAST Observations of the South Ecliptic Pole field: Number Counts and Source Catalogs

    Get PDF
    We present results from a survey carried out by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) on a 9 deg^2 field near the South Ecliptic Pole at 250, 350 and 500 {\mu}m. The median 1{\sigma} depths of the maps are 36.0, 26.4 and 18.4 mJy, respectively. We apply a statistical method to estimate submillimeter galaxy number counts and find that they are in agreement with other measurements made with the same instrument and with the more recent results from Herschel/SPIRE. Thanks to the large field observed, the new measurements give additional constraints on the bright end of the counts. We identify 132, 89 and 61 sources with S/N>4 at 250, 350, 500 {\mu}m, respectively and provide a multi-wavelength combined catalog of 232 sources with a significance >4{\sigma} in at least one BLAST band. The new BLAST maps and catalogs are available publicly at http://blastexperiment.info.Comment: 25 pages, 6 figures, 4 tables, Accepted by ApJS. Maps and catalogs available at http://blastexperiment.info

    The BLAST Survey of the Vela Molecular Cloud: Physical Properties of the Dense Cores in Vela-D

    Get PDF
    The Balloon-borne Large-Aperture Submillimeter Telescope (BLAST) carried out a 250, 350 and 500 micron survey of the galactic plane encompassing the Vela Molecular Ridge, with the primary goal of identifying the coldest dense cores possibly associated with the earliest stages of star formation. Here we present the results from observations of the Vela-D region, covering about 4 square degrees, in which we find 141 BLAST cores. We exploit existing data taken with the Spitzer MIPS, IRAC and SEST-SIMBA instruments to constrain their (single-temperature) spectral energy distributions, assuming a dust emissivity index beta = 2.0. This combination of data allows us to determine the temperature, luminosity and mass of each BLAST core, and also enables us to separate starless from proto-stellar sources. We also analyze the effects that the uncertainties on the derived physical parameters of the individual sources have on the overall physical properties of starless and proto-stellar cores, and we find that there appear to be a smooth transition from the pre- to the proto-stellar phase. In particular, for proto-stellar cores we find a correlation between the MIPS24 flux, associated with the central protostar, and the temperature of the dust envelope. We also find that the core mass function of the Vela-D cores has a slope consistent with other similar (sub)millimeter surveys.Comment: Accepted for publication in the Astrophysical Journal. Data and maps are available at http://blastexperiment.info

    BLAST: Correlations in the Cosmic Far-Infrared Background at 250, 350, and 500 microns Reveal Clustering of Star-Forming Galaxies

    Full text link
    We detect correlations in the cosmic far-infrared background due to the clustering of star-forming galaxies in observations made with the Balloon-borne Large Aperture Submillimeter Telescope, BLAST, at 250, 350, and 500 microns. We perform jackknife and other tests to confirm the reality of the signal. The measured correlations are well fit by a power law over scales of 5-25 arcminutes, with Delta I/I = 15.1 +/- 1.7%. We adopt a specific model for submillimeter sources in which the contribution to clustering comes from sources in the redshift ranges 1.3 <= z <= 2.2, 1.5 <= z <= 2.7, and 1.7 <= z <= 3.2, at 250, 350, and 500 microns, respectively. With these distributions, our measurement of the power spectrum, P(k_theta), corresponds to linear bias parameters, b = 3.8 +/- 0.6, 3.9 +/- 0.6 and 4.4 +/- 0.7, respectively. We further interpret the results in terms of the halo model, and find that at the smaller scales, the simplest halo model fails to fit our results. One way to improve the fit is to increase the radius at which dark matter halos are artificially truncated in the model, which is equivalent to having some star-forming galaxies at z >= 1 located in the outskirts of groups and clusters. In the context of this model we find a minimum halo mass required to host a galaxy is log (M_min / M_sun) = 11.5 (+0.4/-0.1), and we derive effective biases $b_eff = 2.2 +/- 0.2, 2.4 +/- 0.2, and 2.6 +/- 0.2, and effective masses log (M_eff / M_sun) = 12.9 +/- 0.3, 12.8 +/- 0.2, and 12.7 +/- 0.2, at 250, 350, and 500 microns, corresponding to spatial correlation lengths of r_0 = 4.9, 5.0, and 5.2 +/- 0.7 h^-1 Mpc, respectively. Finally, we discuss implications for clustering measurement strategies with Herschel and Planck.Comment: Accepted for publication in the Astrophysical Journal. Maps and other results available at http://blastexperiment.info

    AKARI and BLAST Observations of the Cassiopeia A Supernova Remnant and Surrounding Interstellar Medium

    Full text link
    We use new large area far infrared maps ranging from 65 - 500 microns obtained with the AKARI and the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) missions to characterize the dust emission toward the Cassiopeia A supernova remnant (SNR). Using the AKARI high resolution data we find a new "tepid" dust grain population at a temperature of ~35K and with an estimated mass of 0.06 solar masses. This component is confined to the central area of the SNR and may represent newly-formed dust in the unshocked supernova ejecta. While the mass of tepid dust that we measure is insufficient by itself to account for the dust observed at high redshift, it does constitute an additional dust population to contribute to those previously reported. We fit our maps at 65, 90, 140, 250, 350, and 500 microns to obtain maps of the column density and temperature of "cold" dust (near 16 K) distributed throughout the region. The large column density of cold dust associated with clouds seen in molecular emission extends continuously from the surrounding interstellar medium to project on the SNR, where the foreground component of the clouds is also detectable through optical, X-ray, and molecular extinction. At the resolution available here, there is no morphological signature to isolate any cold dust associated only with the SNR from this confusing interstellar emission. Our fit also recovers the previously detected "hot" dust in the remnant, with characteristic temperature 100 K.Comment: Accepted for publication in the Astrophysical Journal. Maps and related data are available at http://blastexperiment.info

    BLAST05: Power Spectra of Bright Galactic Cirrus at Submillimeter Wavelengths

    Get PDF
    We report multi-wavelength power spectra of diffuse Galactic dust emission from BLAST observations at 250, 350, and 500 microns in Galactic Plane fields in Cygnus X and Aquila. These submillimeter power spectra statistically quantify the self-similar structure observable over a broad range of scales and can be used to assess the cirrus noise which limits the detection of faint point sources. The advent of submillimeter surveys with the Herschel Space Observatory makes the wavelength dependence a matter of interest. We show that the observed relative amplitudes of the power spectra can be related through a spectral energy distribution (SED). Fitting a simple modified black body to this SED, we find the dust temperature in Cygnus X to be 19.9 +/- 1.3 K and in the Aquila region 16.9 +/- 0.7 K. Our empirical estimates provide important new insight into the substantial cirrus noise that will be encountered in forthcoming observations.Comment: Submitted to the Astrophysical Journal. Maps and other data are available at http://blastexperiment.info
    corecore